Market Gardening

Viel Gemüse auf kleiner Fläche –

Market Gardening als Anbaumethode für

Gemeinschaftsgärten

Gliederung

- Regenerative Landwirtschaft
- Market Gardening
- Geräte und Maschinen im Market Garden
- · Anbau- und Beetplanung
- Lean Farming
- Team: Organisation, Kommunikation, Struktur Exkurs Soziokratie
- Quellen und Literatur

Die Landwirtschaft zählt zu den Wirtschaftssektoren, die am stärksten unter den Folgen des Klimawandels leiden, und ist zugleich ein zentraler Verursacher der globalen Erwärmung und des weltweiten Biodiversitätsverlustes

Quelle: IPCC 2019

Regenerative Landwirtschaft

Beispiele von Anbaumethoden und Praktiken:

- Permakultur
- Syntrophische Landwirtschaft
- Agroforstsysteme und Waldgärten
- Biodynamische Landwirtschaft
- Market Gardening / Biointensiver Gemüseanbau

Design: Anna Schreiber

5 Prinzipien der Regenerativen Landwirtschaft

Bodenruhe

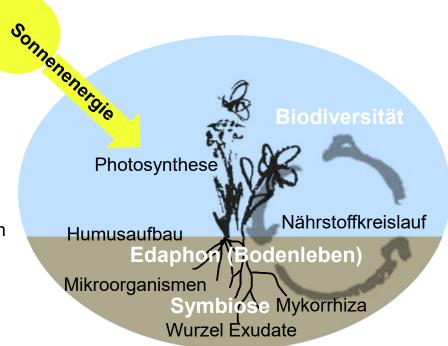
Vielfalt

Durchwurzelung

Ganzheitlichkeit

- Humusaufbau
- Ganzheitliches Management
- In Kooperation mit der Natur

- Abhängigkeiten minimieren
- Selbstwirksamkeit
- Sozial und wertschätzend


Aufbauendes Agrar-Ökosystem

Maximierung der Energieaufnahme im System
→ Höhere Erträge

Pflanzen wandeln durch Photosynthese Sonnenergie in Zucker um. Sie tauschen Zucker gegen mineralische Nährstoffe (Symbiose mit Bakterien und Pilzen)

Ziele:

- Sonnenergie, Wasser und N\u00e4hrstoffe aufnehmen und im System speichern
- Biodiversität erhöhen
- Biomasse steigern
- Boden aufbauen

Ökosystemfunktionen

Vorteile regenerativer Landwirtschaft

- CO2 Speicherung
- Erosionsschutz
- Nährstoffkreislauf
- Schutz vor Wind und Extremwetterereignissen
- Milderes Mikroklima
- Bodenaufbau
- Erhöhte Wasseraufnahme und –speicherfähigkeit
- Mehr Artenvielfalt

Biodiversität

Agrarökosysteme sind ein wertvoller Lebensraum für eine Vielzahl an Pflanzen und Tieren

Die hohe Biodiversität macht das Anbausystem robuster und resilienter als landwirtschaftliche "Monokulturen"

Regulierung von Schädlingen durch Förderung von Nützlingen

Vielfalt

- Mischkulturen statt Reinkultur
- Arten- und Sortenvielfalt
- Strukturvielfalt (z. B. Hecken, Totholz)
- Bodenleben
- Agroforst, Waldgarten
- Raum für Wildnis

→ Biodiversität als wichtiger Faktor für ein gesundes, stabiles und resilientes
Agrarökosystem

Genetische Vielfalt Gesundes Agrarökosystem Struktur Vielfalt **Arten Vielfalt**

Permakultur

- Mehr als nur Landwirtschaft
- Nachhaltige Lebensweise und Landnutzung
- Philosophie & Ethik, die alle Lebensbereiche umfasst
- Leben im Einklang mit der Natur
- Sorge für die Erde
- Sorge für die Menschen
- Begrenze Konsum und Wachstum & teile Überschüsse

12. Reagiere kreativ auf Veränderung

11. Nutze Randzonen und Schätze das Marginale

> 9. Setze auf kleine, langsame Lösungen

8. Integriere, statt abzugrenzen

> 7. Gestalte erst Muster, dann Details

> > 6. Produziere keinen Abfall

1. Beobachte und handle

2. Sammle und speichere Energie

> 3. Erwirtschafte einen **Ertrag**

4. Wende Selbstregulierung an und lerne aus dem Feedback

5. Nutze erneuerbare Ressourcen und Leistungen

Permakultur Zonen

- Unterteilung in 6 Zonen (0-5)
- Mit steigendem Abstand zum Haus sinkt die Nutzungsintensität
- Platz des Market Garden in der Permakultur: Zone 1 und 2

→ Der Market Garden kann als intensiver Gemüseanbau ein Bestandteil der Permakultur sein

Syntrophische Landwirtschaft

- Basiert auf der gezielten Nachahmung natürlicher Sukzessionsprozesse
- Entwickelt wurde es maßgeblich von Ernst Götsch (* 1948):

"peace farming" statt "war farming"

Leitbild:

Das Leben ist auf **gegenseitige Förderung (Syntrophie)** ausgerichtet. Beziehungen zwischen Organismen beruhen auf **Kooperation, Stoffkreisläufen** und wechselseitiger Regulation – nicht auf Kampf oder Konkurrenz. Krankheiten, Schädlinge und Räuber dienen als **Regulationsmechanismen**, die für eine **ökologische Balance** und **Optimierung** sorgen.

→ syntrophische Landwirtschaft ist eine **ökologische Designmethode**, die Landwirtschaft als Teil der ökologischen Sukzession versteht und gezielt mit statt gegen natürliche Prozesse arbeitet.

Syntrophische Landwirtschaft - Prinzipien

Positive Wechselwirkungen (Syntrophie) – Pflanzen fördern sich gegenseitig durch Nährstoffkreisläufe, Mikroklima und Symbiosen (Gegensatz zur Konkurrenztheorie)

Sukzession als Gestaltungsprinzip – Pflanzengemeinschaften werden so aufgebaut, dass sie natürliche Entwicklungsstadien abbilden (Pionier- bis Klimaxgesellschaften)

Biodiversität und Schichtung – Kombination verschiedener Arten mit unterschiedlichen Wuchsformen und Lebenszyklen (räumlich und zeitlich)

Biomasse – Regelmäßiges Schneiden fördert Wachstum

Bodenaufbau – Belassen der Pflanzenreste auf der Fläche zur Förderung des Bodenlebens

Keine externen Betriebsmittel – Verzicht auf synthetische Düngemittel und Pestizide

Agroforst und Waldgarten

Definition Agroforst:

Kombination einer landwirtschaftlichen Nutzung mit mehrjährigen Gehölzkulturen auf derselben Fläche

Unterscheidung in Silvoarable und Silvopastorale Systeme

Verschiedene Formen von Agroforstsystemen:

Streuobstwiesen, (Windschutz-)Hecken, Alley Cropping, Waldgarten und Waldweiden

Mehrdimensionaler Anbau durch Stockwerkaufbau

- → Ermöglicht höhere Erträge
- → Essbare Hecken & Obst/Nussbäume lassen sich gut in den Marketgarden integrieren

Market Garden

Definition Market Garden (Marktgärtnerei):

Kompakte Gärten, die auf kleinster Fläche (von weniger als 0,1 ha bis 3 ha) mit einfachen Techniken und hoher Flächeneffizienz biologisches Gemüse produzieren

Biointensiver Anbau:

Permanente Beete, Mehrfachbelegung der Beete, enge Pflanzabstände, standardisierte Beetmaße, effiziente Raumnutzung, verlängerte Anbauperiode durch Flies und Folientunnel, minimale Bodenbearbeitung, Bodenaufbau, vielfältige Fruchtfolge, Mischkultur

Direktvermarktung:

Hofladen, Wochenmarkt, Solawi, Gastronomie

Geschichte:

Die Wurzeln des modernen Market Gardening finden sich im 19. Jahrhundert in England, Frankreich, Canada und den USA. Pioniere: Eliot Coleman (USA), Jean-Martin Fortier (CAN), Curtis Stone (CAN), Richard Perkins (GBR), Ben Hartman (USA), Urs Mauk (DEU)

BIOINTENSIVER ANBAU

Hohe Erträge auf kleiner Fläche durch Bodenaufbau, Mischkulturen, Fruchtfolge und eine Mehrfachbelegung der Beete.

Prinzipien Market Garden

- Biointensiver Gemüseanbau
- Verzicht auf große Maschinen (Low Tech)
- Effizienz durch Standardisierung "Lean Farming"
- Biodiversität & Bodenaufbau
- Direktvermarktung (Solawi / Gemeinschaftsgarten)

BIODIVERSITÄT

Der Garten als Lebensraum für wilde Flora und Fauna, Anbau alter Sorten.

KREISLAUFWIRTSCHAFT

Komposttoilette, Verwendung von organischen Düngemitteln aus der Tierhaltung (Hühner, Pferde, Fische), Kompost.

BODENAUFBAU

Permanente Beete, Bodenbedeckung, minimale Bodenbearbeitung, Kompost, Agroforst.

Quelle: https://endivia.de/

Minimale Bodenbearbeitung

- Keine schweren Maschinen
- Kein Pflügen

Stattdessen:

- Permanente Beete
- Mulch
- Unkrautbekämpfung durch Abdecken mit Folie
- Agrarfolie (Kritisch wegen Mikroplastik, biologisch abbaubare Alternativen existieren)
- Flache Bodenbearbeitung (ca. 5 cm) mit Fräse oder Kreiselegge
- Tiefenlockerung ohne Wenden (mit der Doppelgrabegabel/Broadfork/Grelinette)

Bodenbedeckung und Durchwurzelung

Vorteile:

- Schutz vor Erosion
- Reduzierung von Nährstoffverlusten
- Erhöht den organischen Kohlenstoffgehalt im Boden
- Tiefenlockerung durch die Durchwurzelung, insbesondere bei einer mehrjährigen, artenreichen
 Gründüngung, z. B. Kleegras (Luzerne hat bis zu 5 m tiefe Wurzeln, durchschnittlich 1,2 m 1,5 m)
- Verbessert die Bodenstruktur
- "Füttert" das Bodenleben und Mikroorganismen
- Nährstoff Transfer und -mobilisierung für die Folgekultur
- Wurzelexsudate: aus organischen Verbindungen bestehendes Ausscheidungsprodukt der Wurzel

Bodenaufbau

- Permanente Beete
- Kompostbeete
- Organische Düngemittel
- Kompost
- Komposttee, Fermente
- Fruchtfolge
- Mischkulturen
- Bodenbedeckung (Gründüngung, Mulch) und Durchwurzelung

Gründüngung

Vorteile:

- Förderung des Bodenlebens & Verbesserung der Bodengare
- Nährstofftransfer (Reduzierung der N-Verluste)
- Förderung der Biodiversität und Nahrungsquelle für Insekten
- Phytosanitäre Wirkung
- Leguminosen können in Symbiose mit Knöllchenbakterien Stickstoff aus der Atmosphäre binden

Wintergründüngung:

Frostharte Gründüngung, welche im Herbst ausgesät wird und über den Winter den Boden bedeckt

Sommergründüngung:

Einjährige Mischung, Aussaat im Sommer, friert im Winter ab

Beete

Standardisierte Maße:

- 75 cm Beet Breite (bei mir 80 cm)
- 45 cm Wegbreite (bei mir 40 cm)
- 5-100 m Beet Länge (bei mir 20 m)

Vorteile:

- Ermöglicht körperschonendes Arbeiten
- Geräte und Materialien (Fräse, Rechen, Netze etc.)
 sind auf die Beet Breite/Länge ausgelegt
- Einfache Kalkulation der Pflanzen/Beet
- Einfachere Anbauplanung

Beete

Kompostbeete

- Gute Bodenstruktur
- Hohe Nährstoffverfügbarkeit
- Geringer Unkrautdruck

Vorteile kompakte Pflanzung:

- höhere Flächeneffizienz
- geringerer Arbeitsaufwand
- geringerer Materialaufwand (Netze, Bewässerung etc.)

Reihenabstände

Im Market Garden sind die Reihen- und Pflanzabstände sehr eng

→ Hohe Erträge auf kleiner Fläche

Nach ¾ ihrer Lebenszeit berühren sich die Blätter

- → Geschlossenes Blätterdach
- → Kein offener Boden
- → Beschattung, weniger Evaporation
- → Weniger Unkraut
- → Weniger Erosion

Beispiel Karotte:

5 Reihe, 15 cm zwischen den Reihen, 4 cm in der Reihe

Standortanalyse

Bodenqualität:

Bodenart, Bodenstruktur (Fingerprobe), Humusgehalt, Nährstoffgehalt, pH-Wert und Wasserspeicherkapazität

Lichtverhältnisse:

Anzahl der Sonnenstunden und mögliche Schattenbereiche, da einige Kulturen mehr Licht benötigen als andere. Berücksichtigung bei Ausrichtung der Beete/Reihen (Süd/Nord), insbesondere bei Agroforst

Wasserzugang:

Sind Wasserquellen für die Bewässerung vorhanden? Tiefe des Grundwassers?

Klima:

Mittlere Niederschläge und Temperaturen im Jahresverlauf Erster und letzter Frost

Flächendesign

Infrastruktur:

- Straßen, Wege, Zufahrt
- Ackerfläche, Beete
- Werkzeug- Maschinen-, Geräteschuppen
- Lagerhalle (Material, Saatgut, Düngemittel)
- Lager (evtl. Kühlraum) für Ernte, Waschstation
- Kommissionierung
- Folientunnel/Gewächshaus
- Jungpflanzenanzucht/Abhärtung
- Bewässerung
- Strom
- Sanitäre Anlagen
- Aufenthaltsraum

Überlegungen bei der Planung der Saison

Zielgruppe?

→ Selbstversorgung, Gemeinschaftsgarten, Restaurant, Solawi, Gemüsekiste, Markt?

Bedarf?

→ Welches Gemüse, welche Mengen, wann?

Fokus?

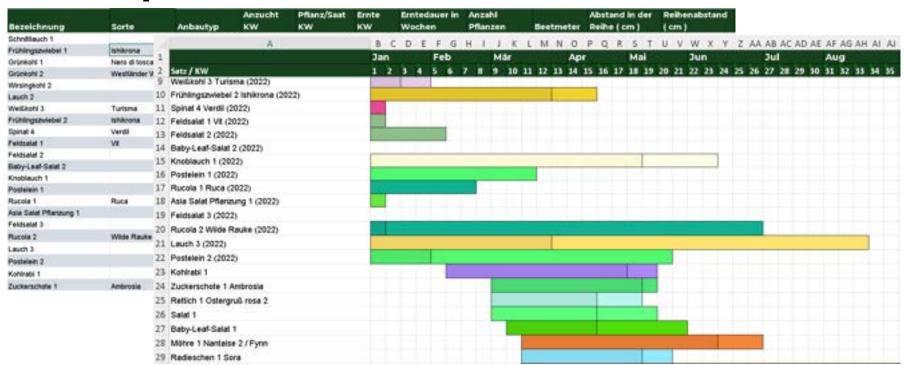
→ Ertrag, Geschmack, Biodiversität, soziales Projekt

Spezialisierung?

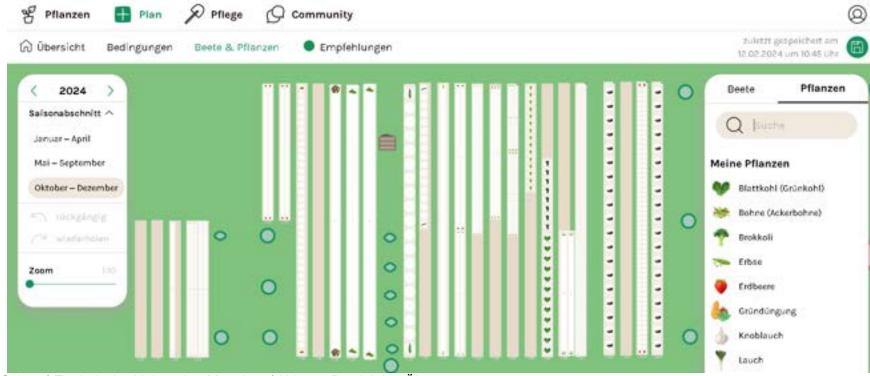
→ z. B. auf Tomaten, Blumen, Pilze, Kräuter, Salat, Microgreens, alte Sorten

Anbau- und Beetplanung

Eine intelligente Anbauplanung ist komplex, sie erfordert viel Wissen und Erfahrung


Erste Orientierung:

- Was machen andere? → Tipps von erfahrenen Gärtnern einholen
- Vorlagen nutzen (z. B. WirGarten)
- Planungs-Tools (z. B. Excel, Q-Gis, <u>Fryd</u>, <u>VegPlotter</u>, <u>GemüseAnbauPlaner</u>)
- Literatur- und Internetrecherche


Tipps:

- Einfacher Anbauplan (z. B. auf Basis einer Vorlage)
- Klein anfangen → Überforderung vermeiden
- "Baukastensystem" in Blöcken →ermöglicht Up-Scaling
- Ausprobieren und Experimentieren, Optimieren → lebenslanges Lernen

Anbauplan "WirGarten"

Beetplan - Fryd

Beetplan – QGis

David Schoo | Technische Universität München | Urbane Produktive Ökosysteme

Anbauplanung – Vorgehensweise

Richtiger Zeitpunkt für die Planung:

Am besten am Ende vom Jahr für die kommende Saison (z. B. im November)

→ Genug Zeit um Saatgut/Jungpflanzen zu bestellen, eigene Jungpflanzenanzucht vorzubereiten

Auswahl der Gemüsearten:

Wie viele Arten und Sorten und welche? → Saatgut bestellen

Zu beachten:

- Fruchtfolge → vermeidet einseitige Bodenauslaugung, verbessert die Pflanzengesundheit
- Schwach-, Mittel- und Starkzehrer → Rotation
- Mischkulturen "gute" und "schlechte" Nachbarn
- Benötigter Platz → Reihen- und Pflanzabstände

Anbauplanung in 7 Schritten

- 1. **Datengrundlage**, relevante Informationen über die Kulturen recherchieren:
- Durchschnittliche Standdauer* (individuell anpassen, je nach Klima, Jahreszeit, eigene Erfahrung)
- frühesten und spätesten Aussaattermin
- Pflanzabstände und Reihenabstände
- Weitere Infos wie Keimdauer, Keimtemperatur, Mischkulturpartner, Nährstoffbedarf etc.
- 2. **Mengenkalkulation**, ausgehend von der Ernte:
- → Saatgutbedarf und Jungpflanzenmenge berechnen (10-15 % Puffer einplanen, Keimfähigkeit beachten)
- 3. **Aussaattermine** berechnen:
- → Aussaattermin = Erntetermin Standdauer*
- → Aussaatkalender erstellen

^{*}Standdauer = Entwicklungsdauer (in Wochen), von der Pflanzung/Direktsaat bis zur Ernte.

Anbauplanung in 7 Schritten

- 4. Flächenbedarf ermitteln:
- → Platzbedarf der Pflanze x Anzahl der Pflanzen (pro Reihe x Anzahl der Reihen) = Flächenbelegung
- 5. Anbauplanung auf **Beet- und Zeitplan** übertragen:
- → Anzahl der Beete/Kultur basierend auf 4 (Flächenbedarf). Zeitplan basierend auf Kalenderwochen (KW) erstellen, insbesondere für die Aussaat- und Pflanztermine, aber auch für die Ernteplanung
- 6. Dokumentation:
- → Anbau- und Ernteergebnisse dokumentieren, Analyse der Fehler → Learnings
- 7. **Anpassung und Optimierung** für die nächste Saison:
- → Optimierung basierend auf 6., Rotation der Beete (Fruchtfolge)

Maschineneinsatz

Verzicht auf einen Traktor

- Mehr Handarbeit (höhere Personalkosten)
- Geringere Investitionskosten und Energiekosten

Einachser (oder Tilther):

- Zur Vorbereitung des Saatbetts
- Flache Bodenbearbeitung mit Fräse oder Kreiselegge
- Geringere Bodenverdichtung
- Kann auch zum Mähen und Mulchen verwendet werden

Handgeräte

- Radhacke (versch. Anbaugeräte)
- Pendelhacke
- Drahthacke
- Jang Seeder/Earthway Seeder
- Rechen
- Reihenzieher
- Spaten, Schaufeln, Grabegabel
- Broadfork
- uvm...

Lean Farming - Konzept

Lean Management wurde im Toyota-Produktionssystem entwickelt und hat sich seitdem in verschiedenen

Branchen und Unternehmen weltweit verbreitet

Konzept "schlanke Strukturen" (Lean):

- Reduzierung von Kosten
- Vermeidung von Fehlern
- Fokus auf wertschöpfende Tätigkeiten
- Reduzierung unwirtschaftlicher T\u00e4tigkeiten
- Kundenorientierung

Ziel: optimierte Prozesse und effiziente Organisation/Management

Lean Farming – Verschwendung minimieren

Einsparpotenziale erkennen:

- Weite (Transport-)wege
- Lagerkosten
- Überproduktion
- Überarbeitung
- Wartezeiten
- Schlechte Qualität
- Nacharbeit
- Material-, Energie-, Wasserverschwendung

Lean Farming - Vorteile

- Gut geplante Infrastruktur, intelligente Prozesse
- Aufgeräumte Arbeitsumgebung
- Klar definierte Abläufe der wichtigsten Prozesse
- Klar definierte Verantwortungsbereiche
- Redundanz und Vertretbarkeit
- Rollen Kompetenz und Interessensbasiert
- Kultur der Optimierung und Weiterentwicklung
- → Zügiges, effizientes Arbeiten ohne Druck und Stress
- → Mehr (Frei)Zeit und Urlaub
- → Schafft Selbstwirksamkeit und Zufriedenheit, nachhaltige Motivation

Die 5 S Methode:

- Sortiere aus
- Säubern
- Systematisieren
- Standardisieren
- Selbstdisziplin

Lean Farming – Kommunikation

- Beteiligung aller KollegInnen (GemeinschaftsgärtnerInnen)
- Ideen und Optimierungsvorschläge
- Offene Fehlerkultur

Regelmäßige Teammeetings (Beispielhaft, kontextabhängig):

• Jeden Tag (5 min) Tagesplanung

Jeden Montag Wochenplanung

1-mal im Monat Teamaustausch

• 1-mal im Jahr Reflektion, Vision

Soziokratie (Exkurs)

Grundlage:

Gemeinsame Werte/Vision und Leitbild

Prinzipien:

- 1. Konsent
- 2. Kreisorganisation (Themengruppen)
- 3. Doppelte Verknüpfung*
- 4. Offene Wahl

Ziele:

- Schnelle und strukturierte Entscheidungsfindung
- Kommunikation in nicht hierarchisch Gruppen
- Entwicklung einer Konsent-Kultur nach dem Motto "Good enough for now, save enough to try"

Jungpflanzen Saatgut Freiland, **Biodiversität Streuobst** Planung & **Organisation** Kompost, Gewächshaus Pflanzengesundheit Gemeinschaftsgarten

^{*} Verknüpfung Arbeitskreis (Team) mit Leitungskreis (Management), Führungsperson von Leitungskreis benannt, Delegierte Person von Arbeitskreis gewählt

Soziokratie als Oranisationsform für Gemeinschaftsgärten

Ermöglicht:

- Hohen Grad an Gestaltungspielraum und Eigenverantwortung
- Raum f
 ür eigene Ideen und Initiativen
- Selbstwirksamkeit
- Hohen Grad an Vertrautheit und Verbundenheit

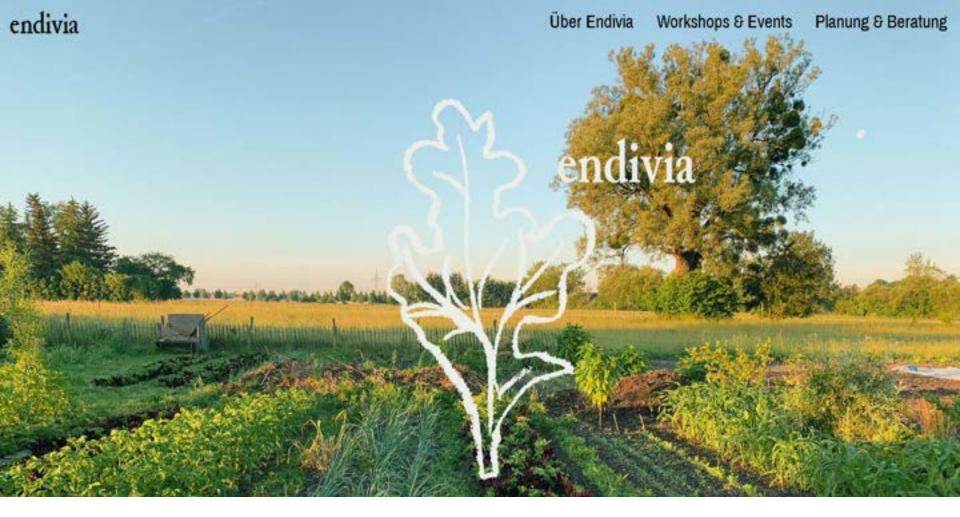
Herausforderungen und Chancen:

- Verantwortung übernehmen
- Fehlerfreundlichkeit
- Authentischer Umgang mit Konflikten
- → Soziokratie erfordert viel Kommunikation und bedeutet, Kompromisse zu finden
- → Dies benötigt Zeit, dafür werden die Entscheidungen von Allen getragen

Ausgewählte Market Garden Projekte in Deutschland

- Schloss Tempelhof (<u>Die Zukunftsbauern</u>) Baden Württemberg
- <u>Marketgarden Weierhof</u> Rheinland-Pfalz
- <u>GemüseheldInnen</u> Hessen
- Biotop Oberland Bayern
- <u>Landwerk</u> Bayern
- Mikrofarm Gräfelfing Bayern
- Endivia Bayern

Weitere Projekte:


- Paradisa
- Gut Heidehof
- GartenCop Freiburg
- Gemüsegarten Hoxhohl
- Gärtnerhof
- Ackerpulco

Und hoffentlich in Zukunft noch viele mehr ...

KLEIN - BUNT - VIELFÄLTIG

"Wir warten nicht auf die eine große Lösung für unsere globalen Herausforderungen. Gemeinsam kehren wir mit kleinen, vielfältigen, ökologischen und ökonomisch tragfähigen Betrieben zurück zum menschlichen Maß und hin zu einem guten Leben in der Landwirtschaft und für die Region!"

Anhang: Zusammenfassung MG vs. konventionelle LW

	Market Gardening	Konventioneller Gemüsebau
Flächengröße	0,2 - 2 ha (hohe Wertschöpfung pro Fläche)	meist >20 ha (hohe Flächenleistung)
Vermarktungsform	Direktvermarktung	Großhandel
Arbeitsintensität	sehr hoch (1.000–3.000 Arbeitsstunden/ha im Jahr)	gering (50–150 Arbeitsstunden/ha im Jahr
Technisierung	weitgehend händisch oder mit Kleingeräten	Traktoren, Erntemaschinen, Bewässerungsanlagen
Investitionen	gering, arbeitskraftbasiert ersität München Urbane Produktive Ökosystem	kapital- und energieintensiv

Anhang Energiebilanz

Parameter	Market Gardening	Konventionell
Ertrag (Gemüse)	15 - 150 t/ha* (je nach Art, Mischkulturen)	20 - 80 t/ha (Ø in Deutschland 33 t/ha)
Gesamtenergieinput	2 - 5 GJ/ha im Jahr (v. a. menschliche Arbeit, Kompost, Bewässerung)	20 - 40 GJ/ha im Jahr (Diesel, Dünger, Pflanzenschutz, Kühlung)
Energieoutput (Nahrungsenergie)	5 - 15 GJ/ha (variabel)	10 - 20 GJ/ha
EROEI (Energy Return on Energy Invested)	2 - 5	0,3 -1,0 (bei stark inputintensiven Kulturen < 1)

→ Netto Energieverlust bei konventioneller LW, positive Energiebilanz bei MG

^{*} Versuch Marktgärtnerei am Zinsenhof (Österreich): 25 kg/m², Ø 13/kg/m²

Anhang Ökologische Übersicht

Aspekt	Market Gardening	Konventionell
Bodenfruchtbarkeit	Aufbauend (Kompost, Mulch, minimale Bodenbearbeitung)	Erosions- und Verdichtungsrisiko durch schwere Maschinen
Biodiversität	Hoch durch Mischkulturen und Blühstreifen	Gering bei Monokulturen
Kohlenstoffbilanz	meist positiv (Humusaufbau > Emissionen)	negativ (Dünger- und Diesel-Emissionen)
Pestizideinsatz	gering bis keine	Mittel bis hoch
Nährstoffkreisläufe	lokal geschlossen (Kreislauf)	extern, linear (Input–Output-System)

Anhang Rentabilität Gemüsearten

Gemüseart	Rentabilität
Kopfsalat	hoch
Gewächshaustomaten	hoch
Knoblauch	hoch
Babyleaf-Salat	hoch
Jungzwiebeln	hoch
Cherrytomaten	hoch
Möhren im Bund	mittel
Zucchini	mittel
Rote Bete	mittel
Mairüben	mittel
Mangold	mittel
Brokkoli	gering
Blumenkohl	gering
Auberginen	gering

Faktoren Rentabilität:

- Marktpreis
- Produktivität/Erntemenge
- Dauer der Beetbelegung
- Arbeits-/Zeitaufwand
- Kosten für Saatgut/Jungpflanzen,
 Düngemittel, Bewässerung

Saatgut, Geräte & Farmen, Netzwerke

Saatgut:

Bingenheimer Arche Noha Reinsaat Dreschflegel

Geräte und Maschinen:

Hartmann Brockhaus

Terrateck

Bekannte Betriebe außerhalb Deutschlands:

La Grelinette, CAN (Jean-Martin Fortier): https://lagrelinette.com/

Ridgedale Farm, SWE (Richard Perkins): https://www.ridgedalepermaculture.com/

Netzwerke:

Agroforst: https://agroforst-info.de/infothek/

Market Garden: https://www.mikrolandwirtschaft.org/market-gardening

Regenerative Landwirtschaft: https://aufbauende-landwirtschaft.de/

Ausgewählte Literatur und Medien

Podcast:

Urs Mauk, Linus Keutzer: https://open.spotify.com/show/6ZcSZZ0aMiP0Ns0ndiCDBD Ackerpulco Farm: https://open.spotify.com/episode/7vsy4nDbDk5surlyWTl2IX

Videos:

Urs Mauk, Relavisio: https://www.youtube.com/@ReLaVisio

Jean-Martin Fortier: https://www.youtube.com/playlist?list=PLCeA6DzL9P4uRadXW0_hj5Ct3EAqWH1zl

Orfeas Fischer: https://www.youtube.com/@OrfeasFischer, Anbauplanung

Filme:

Die Strategie der krummen Gurken

Das Kombinat - Kann Wirtschaft auch solidarisch?

TIAN - Generation Farmfluencer

Bücher:

Jean-Martin Fortier - The market gardener

Ben Hartmann - The Lean Farm

Andrea Heistinger - Handbuch Bio Gemüse

David Holmgren - Permakultur - Gestaltungsprinzipien für zukunftsfähige Lebensweisen

Praxisguide Marktgärtnerei

Quellen

- Intergovernmental Panel on Climate Change (IPCC). (2022). Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
- García-Pausas, J., et al. (2024). Importance of regenerative agriculture: climate, soil health, biodiversity and its socioecological impact.
- Permakultur Institut (2025). https://www.permakultur.de/was-ist-permakultur
- Solidarischelandwirtschaft (2021). https://www.solidarischelandwirtschaft.org/fileadmin/media/solidarischelandwirtschaft.org/Veranstaltungen/Netzwerktreffen/2021/HT21-Workshop1-Lean-Farming.pdf
- Endivia (2022). Quelle: https://endivia.de/
- Kolibri Netzwerk (2024). https://kolibri-netzwerk.de/
- OG Marktgärtnerei (2025). https://speicher.bio-austria.at/index.php/s/AMzcxyRxPT6PT9b?dir=/&editing=false&openfile=true
- Biotop Oberland (2024): https://biotop-oberland.de/